0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i101[0] →* i101[1])∧(i102[0] →* i102[1])∧(i102[0] >= 0 && i102[0] <= i103[0] && i101[0] >= 0 && i101[0] <= 100 && i102[0] + 1 > 0 →* TRUE)∧(i103[0] →* i103[1]))
(1) -> (0), if ((i102[1] →* i101[0])∧(i103[1] + -1 →* i103[0])∧(i102[1] + 1 →* i102[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i101[0] →* i101[1])∧(i102[0] →* i102[1])∧(i102[0] >= 0 && i102[0] <= i103[0] && i101[0] >= 0 && i101[0] <= 100 && i102[0] + 1 > 0 →* TRUE)∧(i103[0] →* i103[1]))
(1) -> (0), if ((i102[1] →* i101[0])∧(i103[1] + -1 →* i103[0])∧(i102[1] + 1 →* i102[0]))
(1) (i101[0]=i101[1]∧i102[0]=i102[1]∧&&(&&(&&(&&(>=(i102[0], 0), <=(i102[0], i103[0])), >=(i101[0], 0)), <=(i101[0], 100)), >(+(i102[0], 1), 0))=TRUE∧i103[0]=i103[1] ⇒ LOAD1135(i101[0], i102[0], i103[0])≥NonInfC∧LOAD1135(i101[0], i102[0], i103[0])≥COND_LOAD1135(&&(&&(&&(&&(>=(i102[0], 0), <=(i102[0], i103[0])), >=(i101[0], 0)), <=(i101[0], 100)), >(+(i102[0], 1), 0)), i101[0], i102[0], i103[0])∧(UIncreasing(COND_LOAD1135(&&(&&(&&(&&(>=(i102[0], 0), <=(i102[0], i103[0])), >=(i101[0], 0)), <=(i101[0], 100)), >(+(i102[0], 1), 0)), i101[0], i102[0], i103[0])), ≥))
(2) (>(+(i102[0], 1), 0)=TRUE∧<=(i101[0], 100)=TRUE∧>=(i101[0], 0)=TRUE∧>=(i102[0], 0)=TRUE∧<=(i102[0], i103[0])=TRUE ⇒ LOAD1135(i101[0], i102[0], i103[0])≥NonInfC∧LOAD1135(i101[0], i102[0], i103[0])≥COND_LOAD1135(&&(&&(&&(&&(>=(i102[0], 0), <=(i102[0], i103[0])), >=(i101[0], 0)), <=(i101[0], 100)), >(+(i102[0], 1), 0)), i101[0], i102[0], i103[0])∧(UIncreasing(COND_LOAD1135(&&(&&(&&(&&(>=(i102[0], 0), <=(i102[0], i103[0])), >=(i101[0], 0)), <=(i101[0], 100)), >(+(i102[0], 1), 0)), i101[0], i102[0], i103[0])), ≥))
(3) (i102[0] ≥ 0∧[100] + [-1]i101[0] ≥ 0∧i101[0] ≥ 0∧i102[0] ≥ 0∧i103[0] + [-1]i102[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1135(&&(&&(&&(&&(>=(i102[0], 0), <=(i102[0], i103[0])), >=(i101[0], 0)), <=(i101[0], 100)), >(+(i102[0], 1), 0)), i101[0], i102[0], i103[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]i103[0] + [(-1)bni_12]i102[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(4) (i102[0] ≥ 0∧[100] + [-1]i101[0] ≥ 0∧i101[0] ≥ 0∧i102[0] ≥ 0∧i103[0] + [-1]i102[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1135(&&(&&(&&(&&(>=(i102[0], 0), <=(i102[0], i103[0])), >=(i101[0], 0)), <=(i101[0], 100)), >(+(i102[0], 1), 0)), i101[0], i102[0], i103[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]i103[0] + [(-1)bni_12]i102[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(5) (i102[0] ≥ 0∧[100] + [-1]i101[0] ≥ 0∧i101[0] ≥ 0∧i102[0] ≥ 0∧i103[0] + [-1]i102[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1135(&&(&&(&&(&&(>=(i102[0], 0), <=(i102[0], i103[0])), >=(i101[0], 0)), <=(i101[0], 100)), >(+(i102[0], 1), 0)), i101[0], i102[0], i103[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]i103[0] + [(-1)bni_12]i102[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(6) (i102[0] ≥ 0∧[100] + [-1]i101[0] ≥ 0∧i101[0] ≥ 0∧i102[0] ≥ 0∧i103[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1135(&&(&&(&&(&&(>=(i102[0], 0), <=(i102[0], i103[0])), >=(i101[0], 0)), <=(i101[0], 100)), >(+(i102[0], 1), 0)), i101[0], i102[0], i103[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]i103[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(7) (COND_LOAD1135(TRUE, i101[1], i102[1], i103[1])≥NonInfC∧COND_LOAD1135(TRUE, i101[1], i102[1], i103[1])≥LOAD1135(i102[1], +(i102[1], 1), +(i103[1], -1))∧(UIncreasing(LOAD1135(i102[1], +(i102[1], 1), +(i103[1], -1))), ≥))
(8) ((UIncreasing(LOAD1135(i102[1], +(i102[1], 1), +(i103[1], -1))), ≥)∧[2 + (-1)bso_15] ≥ 0)
(9) ((UIncreasing(LOAD1135(i102[1], +(i102[1], 1), +(i103[1], -1))), ≥)∧[2 + (-1)bso_15] ≥ 0)
(10) ((UIncreasing(LOAD1135(i102[1], +(i102[1], 1), +(i103[1], -1))), ≥)∧[2 + (-1)bso_15] ≥ 0)
(11) ((UIncreasing(LOAD1135(i102[1], +(i102[1], 1), +(i103[1], -1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_15] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD1135(x1, x2, x3)) = [1] + x3 + [-1]x2
POL(COND_LOAD1135(x1, x2, x3, x4)) = [1] + x4 + [-1]x3
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(<=(x1, x2)) = [-1]
POL(100) = [100]
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(-1) = [-1]
COND_LOAD1135(TRUE, i101[1], i102[1], i103[1]) → LOAD1135(i102[1], +(i102[1], 1), +(i103[1], -1))
LOAD1135(i101[0], i102[0], i103[0]) → COND_LOAD1135(&&(&&(&&(&&(>=(i102[0], 0), <=(i102[0], i103[0])), >=(i101[0], 0)), <=(i101[0], 100)), >(+(i102[0], 1), 0)), i101[0], i102[0], i103[0])
LOAD1135(i101[0], i102[0], i103[0]) → COND_LOAD1135(&&(&&(&&(&&(>=(i102[0], 0), <=(i102[0], i103[0])), >=(i101[0], 0)), <=(i101[0], 100)), >(+(i102[0], 1), 0)), i101[0], i102[0], i103[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer